提取双宾语的正则表达式:\S+_V\w+\s\S+_[NP]\w+\s\S+_[NP]\w+\b
使用Colligator 2.0对Claws4标注过的文本进行分析:
1. recounted_VVD John_NP1 Walford_NP1
2. told_VVN Sinn_NN121 Fein_NN122
3. mismatched_VVD pas_NN31 de_NN32
4. provided_VVN coal_NN1 seams_NN2
5. become_VVI migrant_NN1 labourers_NN2
6. allowed_VVD Edith_NP1 Whalley_NP1
7. were_VBDR dairy_NN1 breeds_NN2
8. rehousing_VVG Springtown_NP1 residents_NN2
9. watched_VVD Mrs_NNB Hollidaye_NP1
10. is_VBZ Mike_NP1 Hallett_NP1
11. suffered_VVD liver_NN1 failure_NN1
12. finding_VVG woodworking_NN1 workshops_NN2
13. handling_VVG telephone_NN1 traffic_NN1
14. eliminating_VVG employment_NN1 discrimination_NN1
15. met_VVD John_NP1 Virgo_NP1
16. include_VVI staff_NN costs_NN2
17. serving_VVG cask_NN1 beer_NN1
18. buying_VVG ad_NN1 borrowing_NN1
19. appoint_VVI Forest_NN1 justices_NN2
20. dispense_VVI keg_NN1 beers_NN2
21. gave_VVD business_NN1 travel_NN1
22. chose_VVD beer_NN1 soup_NN1
23. held_VVD hair_NN1 dryer_NN1
24. ignore_VV0 dilution_NN1 instructions_NN2
25. accompanying_VVG Mr_NNB Gorbachev_NP1
26. involving_VVG Joan_NP1 Lewis_NP1
27. fired_VVD tortoise_NN1 stove_NN1
28. denied_VVD party_NN1 strategy_NN1
29. discussed_VVD efficiency_NN1 standards_NN2
30. asked_VVD John_NP1 Wakeham_NP1
31. contemplated_VVD Jolyon_NP1 Vigo_NP1
32. watch_VV0 September_NPM1 September_NPM1
33. made_VVD hunt_NN1 scenes_NN2
34. may_VM prene_NN1 therin_NN1
35. incorporates_VVZ NHS_NP1 hospitals_NN2
36. produce_VVI disciplinarian_NN1 managers_NN2
37. were_VBDR family_NN1 events_NN2
38. featuring_VVG Gracie_NP1 Fields_NN2
39. consider_VVI lock_NN1 Troy_NP1
40. following_VVG heart_NN1 attacks_NN2
41. Controlling_VVG ammonia_NN1 emissions_NN2
42. solidify_VVI covenant_NN1 beliefs_NN2
43. using_VVG foam_NN1 cleaning_NN1
44. receiving_VVG day_NNT1 care_NN1
45. ride_VVI Guy_NP1 Harwood_NP1
46. Cooling_VVG water_NN1 pumps_NN2
47. selecting_VVG sound_NN1 foundation_NN1
48. do_VDI causes_NN2 anxiety_NN1
49. supported_VVD Edward_NP1 Heath_NP1
50. given_VVN advance_NN1 notification_NN1
51. managing_VVG Doncaster_NP1 Rovers_NP1
52. locating_VVG breeding_NN1 Water_NN1
53. alloying_VVG Copper_NN1 alloys_NN2
54. relieve_VVI traffic_NN1 congestion_NN1
55. holding_VVG Saddam_NP1 Hussein_NP1
56. dating_VVG model_NN1 Naomi_NP1
57. won_VVD Aberdeen_NP1 South_ND1
58. was_VBDZ party_NN1 night_NNT1
59. sending_VVG London_NP1 share_NN1
60. clarify_VVI wine_NN1 classification_NN1
61. ensuring_VVG breeding_NN1 synchronicity_NN1
62. met_VVD Margaret_NP1 Thatcher_NP1
63. undercut_VVI Mr_NNB Bush_NP1
64. had_VHD mining_NN1 interests_NN2
65. include_VV0 La_NP1 Bombola_NP1
66. said_VVD Mrs_NNB Beeton_NP1
67. attend_VVI training_NN1 courses_NN2
68. includes_VVZ Tina_NP1 Turner_NP1
69. attack_VVI Croat_NP1 positions_NN2
70. try_VVI satellite_NN1 television_NN1
71. were_VBDR Colin_NP1 Skipp_NP1
72. aiming_VVG point_NN1 technique_NN1
73. include_VV0 spider_NN1 monkeys_NN2
74. require_VVI majority_NN1 support_NN1
75. have_VH0 injury_NN1 problems_NN2
76. using_VVG terracotta_NN1 pots_NN2
77. state_VV0 benefit_NN1 books_NN2
78. moving_VVG water_NN1 tanks_NN2
79. inspired_VVD John_NP1 Johnson_NP1
80. want_VV0 Ferdinand_NP1 Marcos_NP1
81. replace_VVI Micky_NP1 Stewart_NP1
82. has_VHZ Sutton_NP1 back_NN1
83. writes_VVZ Georgina_NP1 Henry_NP1
84. followed_VVD wireless_NN1 operator_NN1
85. rationalise_VVI styrene_NN1 monomer_NN1
86. Following_VVG government_NN1 policy_NN1
87. says_VVZ Anne_NP1 Swithinbank_NP1
88. reinforce_VV0 ambulanceman_NN1 Jack_NP1
89. crushing_VVG Helena_NP1 Sukova_NP1
90. brought_VVN Harry_NP1 home_NN1
91. blame_VVI London_NP1 influences_NN2
92. identifying_VVG staffing_NN1 requirements_NN2
93. rating_VVG bond_NN1 insurers_NN2
94. control_VVI body_NN1 weight_NN1
95. comprise_VV0 dune_NN1 ridges_NN2
96. take_VVI afternoon_NNT1 tea_NN1
97. delegating_VVG personnel_NN2 issues_NN2
98. get_VVI wage_NN1 reductions_NN2
99. encourages_VVZ exchange_NN1 visits_NN2
100. was_VBDZ James_NP1 Williamson_NP1
101. replaces_VVZ Neil_NP1 Francis_NP1